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Abstract— The paper considers the framework of distributed dynamic, i.e. new nodes can appear or disappear, and the
Bayesian linear estimation. We introduce some consensusd$ed  nodes characteristic might not be known to any node. These
estimation strategies that are equivalent to centralized wes features make distributed estimation challenging sinde it

ending knowledge of some parameters, e.g. number of agents - . .
ﬁ] the r?etwork. |fgsuch param%ters are not known, agents can €cessary to design algorithms that do not rely on the aiprio

estimate them locally or exploit prior knowledge. We show tiat ~ knowledge of the network topology and network parameters,
in this case the performance depends on parameter uncertaijpn ~ and need to be robust to node failure and dynamic changes.

in such a way that, in case of large errors, the distributed  Distributed estimation and, more generally, distributed
estimator can perform worse than the local one. Then, we find - ¢ mhtation is a well established research areas [4] [5], in
some sufficient conditions on the error magnitude which ense . - .
that the distributed scheme behaves better than the local an particular in ,the cc_)ntext of compu.ter network;. However it

Index Terms— Bayesian linear model, distributed estimation, has been witnessing a renewed interest mainly due to the

consensus, performance characterization, sufficient coitibns ~ appearance of new technologies which pose new challenges
to these old problems, like lossy communication, bandwidth
. INTRODUCTION limitation, energy constraints, unreliable devices [6] [8]

The continuous growth of large scale networks of defand references therein). Even standard problems in dontro
vices which are capable of sensing and interacting wittheory, like Bayesian estimation of linear systems [9],ehav
the environment, commonly referred as Networked Contrddeen shown to be nontrivial in the context of Wireless Sensor
Systems (NCSs), is enabling a whole new range of applicaletworks mainly due to limited computational and commu-
tions ranging from ambient monitoring using wireless sensaication resources available to the network nodes [10].[11]
networks to surveillance using networks of smart cameral the framework of Bayesian estimation, several authors
from multi-robot exploration to energy management usinfpcused on distributed or decentralized computations. For
smart grids, just to name a few [1]. However, these newxample, in [12] authors analyze how to combine multiple
applications come with great challenges since the design mfidependent results of learning algorithms performed by
a large scale network of cooperating systems, is still at ddentical agents, providing bounds on the number of agents
empirical level and sound methodological strategies alg onnecessary to obtain a desired level of accuracy. In [13] the
recently appearing [2]. author proposes estimation strategies using a hieraichica

Within this context, in this paper we address the problerstructure: the sensor nodes perform measurements of the
of distributed estimation, i.e. the problem of estimatinged process and preprocess this data, then a supervisor node
of unknown system parameters based on the measuremefokses these local outputs and compute a global estimate. It
obtained from many sensor nodes. These nodes are provideshsiders also the expected losses for predicted dataggivi
with computational and communication capabilities andrtheupper bounds as functions of the number of samples of
objective is to obtain an estimate of the unknown parametegach agent. There is also a wide literature on distributed
possibly through cooperation. We also consider a framewosstimation subject to communication constraints: in [14]
in which there is no central coordinating unit and sensaiuthors propose a message-passing scheme for a nonpara-
nodes form a connected network, i.e. they might not beetric distributed regression algorithm, while in [15] yhe
able to communicate directly, but there is path of thasurvey the problems related to the distribution of the lzsyn
allows information to travel from any node to any otherprocess in wireless sensor networks, analyzing both parame
node. An example of such a system is given by the nexic and nonparametric scenarios. In [16] the same authors
generation power grids [3] where each energy producer analyze the existence of decision and fusion rules assuring
user will be connected through a communication networkonsistency for a binary classification problem, where the
and can exchange information to estimate some unknowneasurements are performed by a set of agents with limited
parameters of the network like its efficiency, its capacityyommunication capabilities and transmitting informatton
its current utilization, etc. These networks are likely ® b a central unit. In this framework also some authors propose
some asymptotic results on the performances of decision
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computation and communication resources, minimal nodehere:
synchronization, and they are robust to link and node failur vi V(e?) ... V(0
The main idea of consensus algorithms is to average mea- i ] )

surements or local estimates among all network nodes, based var : - : : )

on the intuition that averaging reduces the noise and theref ys Vo) ...V (qu)

the parameter estimation error. However, this is not alwaygsing the matrix inversion lemma and simple algebraic
the case, since local estimates are correlated and a simpignipulations, egn. (5) can be rewritten as:

average might not be the optimal strategy, in particularrwhe

. S yi

sensors have different accuracy. R T -1 Do =

In this work we address this problem. In particular we acent = YaC (V(O‘ )) Zsj ‘ @
analyze when averaging leads to better performance than a =17
local estimate under different noise conditions and when thwhere above, and in the sequel:
network nodes do not know the number of sensors in the g
network or their noise levels. We show that indeed perfor- o= Z % ) (8)
mance improvement is not always guaranteed by consensus =1 i

and we provide some sufficient conditions which guarant

it under mild conditions. "C. Distributed Bayesian estimation

Let's assume that no central units can collect the whole data
[l. PROBLEM STATEMENT set and (in this section) that all sensors know the valueef th

In this section, first, we introduce three different scemmaf ~sum of the precisiona before starting the various estimation
Bayesian estimation. Then, we state the main problem whighrategies.

will be investigated in the subsequent sections. If the number of measurements for each senbris
) o smaller than the number of parametérsthen, since:
A. Local Bayesian estimation
S Vi 1 S Yi
_ . P — 5 - 5
y; = Ca+ v, i=1,...,8 (1) Zi:lg_l? %Zi:lg_lz

.
.

where S is the number of sensorgyy;; € RM is the

- § 1
measurements vector collected by thién sensora € R is sensors can reach average-consensugzomnd 7, then

compute their ratio (9), and then compute the estimate (7),
Rhite it s > E, itis preferable to use algorithm 1. Since in
the practical case it is easier to haVve > E, we will refer
through the paper to this situation.

Gaussian vector with autocovariancg, i.e.a ~ N (0, 2,).
In addition, »; € RM is the noise vector with density
N (0,021)), independent o& and ofv;, for i # j. Finally,
C € RM*E js a known matrix, equal for all sensors.

Under the assumptions above, the local Minimum Me
Square Error (MMSE) estimator af giveny;, is

Algorithm 1 distributed estimation with known sum of
aBrecisions
1: (requirement) sensors have knowledge of the quantity
e = Ela |y;]= cov(a,y;) var(yi)’1 Yi @ before starting step 2
= 2,07 (V (Ug))—lyi. 2: sensors achieveilaverage consensus on the quantities
S.CT (V (™) 4 and 2;
3: at the end of the consensus process, sensors compute
V() :=C8.CT + 01y ) the optimal estimate dividing the two obtained averaged
variables.

where, forf € R:

The autocovariance of the local estimation efgg ; :=

a — ajpc; IS given by: . .
loc.i 15 G y Let i be the harmonic mean of the measurements noises

var(dic,) = Sa — SaCT (V (02))*1 CYa. (4) variances,ie.:

K2

B. Centralized Bayesian estimation h:=H (0f,...,0%) = 5

ER
If S > 2 and all measurementfy;} are collected by a 21 o?
central unit, the MMSE estimate of the parameter veator |, is evident that avera
can be computed in a centralized way via the following:

—1
y1 y1 yi

Acent:= COV | @, | var : : (5) o= ZU%Q = % ; (11)
ys ys ys =t
once the number of sensors in the netwdtks known, it
is possible to satisfy requirement 1 of algorithm 1 using a
pre-distributed estimation step far!.

(10)

ge consensus on the quantioﬁi;es
corresponds to a distributed estimation/of'. Since:



D. Problem statement Notice that even ifa is assumed to be the same among

investigated in t.his paper. Assume that S and h are p Asymptotic analysis of bound (13)
unknown (plausible situation when sensors do not hav
knowledge on the whole network). Then sensors have t
possible strategies: the first is to make a guess «, use

it in step 2 of algorithm 1, run in parallel two average-
consensi (one ofE,C7 (V (a—l))‘l ¥: and one ong—lg) o if the topology and? are fixed but we vary the noisiness
and obtain a (suboptimal) estimate. The second is firstly ®@f sensorsj # i, we have that:

distributely estimateh with an average consensus g}g _ ) ) )

then make a guesS of S (the same among alll senéors), Gstop=0 = b-(i)= 27:1-2’ b+ (i) = +o<214)
then regc_h average consensuﬂ_gerT v % ) % and_ i.e. if there exists a sensor that has “perfect” measuresnent
finally divide the result foh. The first strategy is faster, while then sensot will improve its estimation with any guess

the second requires a guess on a quantity that is more eagjly js at least half of its precisios,. In the contrary, if:
deducible. Notice also that, as previously discussed, \ttnen i
number of measurements per sensor is smaller than the nume . o n = b (i) — 1 by (i) — 1 (15)
ber of parameters, it is convenient first to obtgid >, ¥+ and 19 > -\ o2’ T ! o2’
1 1\ ¥ P .
5 2; 57 Via consensus and then apply the transformatiofk. if all the sensors have unreliable measures then seénsor
' -1 ; .
matrix S.CT (V (& so that, subsequently, in this caseSnou!d use the local estimator (2);
: S o if the noisiness of all the sensors are the same but we vary
the problem is always reduced to make a gues$on

We would like now to derive conditions that guaranteethe number of sensofS in the network, we have that:

that the process of sharing and combining the information S — +c0c = b_ (i) —0 by (i) —» +o0 (16)
described by these suboptimal versions of algorithm 1 im- )
proves the estimation af with respect to the local estimation b!“ we _send ba_ck the reader to Sec. V for a more detailed
strategy of eqn. (2). In other words, we want to obtaiﬁj',scuss'on of this case; . ) i
conditions relative to the level of uncertainty on the value® if the topology and‘the noisness c.)f all sensrare fixed

of & and S that ensure that the distributed strategy returns Ut the one of sensar and we vary it, then we have that:
smaller autocovariance (in a matrix sense) of the estimatio 0?2 >0 = b_(i)— 400, by (i) — +o0 (17)
error than that obtainable by the local one.

efore deriving other results it is interesting to analyze t
asymptotic behavior of bound (13). For ease of notation we
defineb_ (i) :== a—, /a? — 5% andb, (i) := a+, /a? — 5

i.e. if the measurements of sengare “perfect” then sensor
I1l. AN UNIFORM SUFFICIENT CONDITION i should estimate without caring about the other sensors. In
We start the analysis considering the first suboptimalegsgt the contrary, if the measurements of sensare unreliable
where sensors make a (common) guassf o« and then we should expect to have an improvement for every gaess
run 2 parallel average-consensi. The second strategy will bJnfortunately from bound (13) we obtain only the following:
considered in sec. IlI-C.

2 . .
Using a gues®, at the end of the consensus process the o; = too = b (1) =0, by (1) =20 (18)

distributed estimate result is: i.e. a subset of the interval we were expecting. This is due
1 ZS Yi to the fact that thm. 1 gives only a sufficient condition for
A (@) : Ty (gl)) T s he optimalit looking f
agist (@) := XaC (V (a )) =5 (12) the optimality we are looking for.
G 2im1 52 As a general consideration, if sensois highly accurate

while all the others are not, then bound (13) is thight for
ller than th G (3. AN int i ton is: the sensor (the accurate one), so it is more probable that
smaller than the one Glyst (). An interesting question is: the guessedy falls outside of its bound. Since (13) is a

can we ];'r?d vaI.ues Oﬁf fht at the ??r? c;‘. tthgb etstcljmatmtn sufficient condition, it could be that, & falls near outside
process the variance of the error of the distributed stya ®Ghe indicated interval, then still the distributed estiioatis

is smaller than the error of the local strategy, indepermientbetter than the local one also for the accurate sensBut
of X and onC'? The answer is in the following: if it falls far outside, this could become false.

Obviously the variance of the estimation error @y is

Theorem 1. 1f B. Conditions referred to the network as a whole

Q€ [a -, /a?— %, a+,/a?— %} (13) The following condition assures that each sensor in the

i i network has an advantage from the distributed algorithm:
then the variance of the estimation error of the distribute
estimator agist (@) is smaller than the one of the local

estimatoray;, for every priorX,, number of parameters _ ) a ) a 19
E, sum of precisions and matrixC'. aE oy ot o2 et = o2 (19)

80ro|lary 2. Definec?;, := min; {c?}. Then if




then the variance of the estimation error of the distributed V. EQUAL MEASUREMENTS NOISES VARIANCES
estimator agist (@) is smaller than the one of the local The special case? = o2 for all i's is interesting because
estimatorajo,; for each sensoi. it corresponds to networks composed by the same type of

Since in a distributed scenario it could be interesting t§€Nsors. In this case we have that:
S

analyzeaverage behaviors, it is important to answer to the 1 S
following question: can we find values of s.t. the variance Q= Z 2 52 (24)
of the error of the distributed strategy is smaller than the =1
average error of the various local strategies, indepehden@nd the centralized estimator can be rewritten as:
of the used prior2, and of the matrixC? The answer is N . A\ /1 E
given in the following: Acent = YaC <V <§>) S Zyl' : (25)
=1
Theorem 3. Considering the harmonic medndefined in  The estimation error variance in this case is optimal and

Eqn. (10), if given by:

_ - @ -
[OAS [a 1/ a? — ’ a+ \/ a? — E:| (20) Var(acent) =35 — ZaCT (V (%2)> Cxa . (26)

then the variance of the estimation error of the distributegqn (25) can be distributely computed using algorithm 2
estimatoragist (@) is smaller than the average variance of the-po main differences with algorithm 1 and the different
estimation errors of the local estimataig;. noises scenario of sec. II-C are:

As expected, since the minimum element of the set of « sensors must know the exact number of active sensors
scalars is always smaller than the harmonic mean of this set, S and not the sum of precisions
the interval described in bound (19) is always included & th « sensors need to achieve consensus only to one vectorial
interval described in bound (20), implying that conditid®) guantity (consensus on the precisions is not needed);
is sufficient for condition (20). « even if the steady state has not been reached, the quanti-
ties involved in the consensus algorithm are estimations

C. Uniform conditions when knowing the harmonic mean of
of the parametera.

the measurements noises
If sensors use the second suboptimal strategy of sec. Il ;;gorithm 2 distributed estimation with equal noises and
(composed by a distributed estimation/gfa guessS of S nown number of sensors

and subsequently an average consensus), the previousrestf. each sensor locally computes an initial estimate of the
can be immediately reformulated as follows:

—1
parameters, C* (V (%2)) Vi
Corollary 4. If 2: sensors achieve average consensus on the previous quan-

tities.
Sh / Sh
elS— SQ—ﬁ,S+ SQ—?] (21)
1 1 A

. o _ . Estimation without perfect knowledge on S
then the variance of the estimation error of the distributed ) . .
estimator ags (@) is smaller than the one of the local In order to achieve the optimal performances, the various

2 .
estimatorai ;, for every priorS,, number of parameters S€NSorsmust use the correct parameté- in step 1 of
E. sum of pfecisionsz and matrixC. algorithm 2, thus all sensors must have perfect knowledge

on S. But what happens when this is infeasible? Assume all
Corollary 5. If sensors use in step 1 of this algorith a certain gigthe

_ Sh Sh same among all the sensors), instead of the correct panamete
Se lS — /82— 2 S+ /5% - — (22)  S. The resulting distributed estimator is now dependent on
min min this new parametes:
then the variance of the estimation error of the distributed S o\ —1
estimator agist (@) is smaller than the one of the local gz, (?) - 12 .07 (V (C’:>) Vi
estimatoraoc ; for each sensot. P S
—1 s
Corollary 6. If 2CT <V <%2)) (% Zm) .
Se [5 V825, 5452 S} (23) =

then the variance of the estimation error of the distributedhe new estimation error, defined agist(S) = a —

estimatoragis; (@) is smaller than the average variance of th@dist (5) has a variance equal to:
estimation errors of the local estimataig;.

Wl

I
\g

_ R . var (3ast (5)) = Ta - 2207 (
Notice that corollary 6 is not independent of the various ) 1 )
noises variances? since it implicitly requires the knowledge +Z.07 (V (%)) Vv (%)
on their harmonic mean. (28)



that obviously is equal to expression (26) wheneSer S.  Corollary 9. Define:

V. AN UNIFORM SUFFICIENT CONDITION FOR EQUAL J(S) = min {dm s.t.o? + (1-S5)d,, > 0} (32)
MEASUREMENTS NOISES VARIANCES me{L,....M}

As before, we are interested to understand what happe‘?\@d:
when the various sensors use in step 1 of algorithm 2 not 9 5 5 . 5

the exact number of sensafsut a guess (the same among o RS+ [o?S (S = 1) (0* +d (S))
the network). Using eqgn. (24) we can reformulate bound (13) Smin (5) = o2 +(1—8) g(s)

for the current case, and obtain the following bound:

If
1 1 g .
—_ {_2 (s-vF=5). 5 (s+VF s S)] (29) S € [1,2(Smin (S) = 1)] (34)
(o g
_ ) ) then the variance of the estimation error of the distributed

that is dependent on the measurement noise variafice estimator ags (S) is smaller than the one of the local
Using a different proof (not suitable for thm. 1) we canestimatorsa,;, for every priors,, number of parameters
remove this dependence and obtain a more elegant resulty; measurement noise variane®, matrix C and sensof.

(33)

Theorem 7. If VIl. CONCLUSIONS

Sell,2(5-1) (30) In this work we studied general consensus-based distdbute
then the variance of the estimation error of the distributeBayesian estimation scheme useful for networks of smart
estimator ag;st (?) is smaller than the one of the local sensors whose number and noise characteristics are only
estimatorsajoc ;, for every priorZ,, number of parameters partially known. In particular, we have derived mild suféiot
E, measurement noise varianeé, matrix C' and sensoi.  conditions on the system parameters ensuring that the error
variances affecting the estimates obtained by each noee aft

Notice that if § = 1 then equation (12) reduces to thec?nsensus are smaller than those affecting the local @ssma
local strategy (2). For this reason thm. 7 assures that locd

estimation (2) plus average consensus is, at the end of ke the ones obtained by a sensor using only its sensor data.

consensus process, always better than local MMSE estima(tje h's IS a pr_ehm_mary work to anglyze consensus-based
. N istributed estimation performance in terms of robustness
independently of5, ¢4, ¥, andC.

to system parameters and characteristics. Future work also
VI. SOME NON UNIFORM SUFFICIENT CONDITIONS FOR includes the extension to sensors with different obseswati
EQUAL MEASUREMENTS NOISES VARIANCES models, i.e.C = (C;, to measurements with correlated

o pd . :
Considering still the case? = o2, assuming the knowledge N0ISe. I-e £ [vimvjn"] # 0, and to non-parametric function

of . CT (or equivalently on its eigenvalues,), it is pos- estlmat|0r! V\_/h_ere _the pa_lrameter v_ector a is replaced by an
sible to enlarge bound (30) and find some other interestirf’known infinite-dimensional function.

properties. _ ) APPENDIX
First of all, there could be networks (i.§.andc*) where, Lemma 10. If a; > 0,7 =1,....S andb > 0, then:

no matter how the guesS is chosen, distributed estimation

leads to a smaller error variance than the local one: HOb+a,....,b+as)>b+ H(ay,...,as) (35)
Proposition 8. If dmi, is the smallest eigenvalue 6f2,CT
and if 2 Proof. Defining:
g . .
dmin > ﬁ (31)
f):=H(Ob+a,...,b+as)— H(ay,...,as) —b (36)

then the variance of the estimation error of the distributed ]
estimator agit (S) is smaller than the one of the localWe need to demonstrate th#tb) > 0 for b > 0. Since

e o - b
estimatorsay ;, for every sensor and guesss € [1, +o0). f(0) = 0, it is sufficient to demonstrate thg{d(b_) > 0. Now

) o ] this is true if:

In this case, the distributed estimator behave better than g ) g 9
the local onealso assumingS = +oo, that is equivalent to SZ 1 S Z 1 (37)
assume that the averaged measurements have no measure- — b+a;) ~ — b+ a; ’
ments error. Note that networks with highor low o2 have = = .
highgr probability to s_z?\tisfy.condition (31). The_ statsti Considering the two vectorss — [Hla ’m,b:a }
requirement of proposition 8 is that the smallest eigerevalu T . ! s
C3.CT has to dominate the resulting noise of theraged and v = [1,...,1] K condition (37) corresponds  to
measurements. (x,x) (y,y) > |[{z,y)|” that is the well-known Cauchy-

If S ando? are s.t. proposition 8 is not satisfied, then we>chwarz inequality. .

can state (as an intermediate consequence of the proof of
Thm. 7) the following:



Proof. (of thm. 1) Let us introduce the orthogonal matéix thus (1 — aaf) dn < 0, thus parabola®;., (@) can be

that diagonalizes the first addendum of matrix (3): convex, concave or degenerated dependingoiTheir roots
are in general:
Ccs.CT =UDUT | (38) n 9
: 24 2—1)(ady, + ac?
SinceUUT = I,;, we can also write: ry (i,m) = @9 \/Q(QUZ )(204 ao;)
g; +(1—aal-)dm (48)
V(G) = CEaCT—f—eI]u _ o )
= UDUT +9UUT (39) ac? F+/(ao? — 1) (ad,, + ao?)
— T
= UD+00)U". Recalling that we have to find the’s that assure condi-

Now we are looking for the set af s.t.: tion (46) independently of andm, we analyze separately
the three cases.

var(a — agist (@)) < var(a — aoc,:) (40) Convex parabolas: (i.e. 07 + (1 — ao?) d,, > 0):in
where: this caser_ (i,m) < ry (i,m) for all 4 andm Since:
var(a — agist (@) = Ta — 28,07 (V (%)) N r— (i,m) < — a = ==:0_(i) (49)
STV VR G) e @t +aoT ~T)a
41 2 2 2
. T+ < —1)ao; .
and: ry (i,m) > 22 (i‘;’ Jagi _. by (i) (50)
~ -1 ¢
var(a — apci) = Ya = ZaC" (V (07))  CZa. (42)  and since it can be shown by rationalizationtof (i) that

Using the fact that for a generic matri® then A < - (i) < by (i) for a||_0-2 > 0, we are sure that for any
0 = BABT < 0, we can derive a sufficient condition CONvex parabola; ., (@):

assuring (40): aclh-(), by ()] = pim@<0. (51)
—2 (V (%))714' (V (%))%V é) (V (%))713 Concave parabolas: (i.e.o? + (1 — ao; )d < 0): we
< - (V (03))‘1 ) (43) check that implication (51) is still valid. For doing so it is

sufficient to check ifp; . (b— (7)) < 0, pim (b (i) < 0

Diagonalizing the variou¥” (0)’s in eqn. (43) we obtain: g4 that:
—2U (D+ 11y) ' UT+ Opim (@) { Opim @)
a /. . 1,m _ 1,m 52
R Y U VN IEE S (ORI G A I (e O

—1

<-U (DJFGZ'QIM) ur and by simple algebraic majorizations this can be easily
where we also used the fact that diagonal matrices commughown to always subsist.
It is easy to show that for orthogonal matricEswe have Degenerated parabolas: (i.e.o? + (1 — ao?) dy, = 0):
that A < 0 & UAU" < 0, so if we remove all the in this casep; ., (@) = — (2a0?)@ + a is a negatively
U’s from equation (44) we still have a sufficient conditionskewed line. Since it easy to verify that also in this case
for inequality (40). Now all the remaining matrices arep, ,,, (b_ (¢)) < 0, it is true that condition (51) is always
diagonal, so the condition is satisfied as soon as it is satisfisatisfied, for alln. Now, by simple algebraic manipulations,
component by component, so once we defipe:= D,,.,, it can be shown thatt € [b_ (i),b ()] is equivalent to

with m = 1,..., M, the sufficient condition is: condition (13). O

- dm 1 -1 . . i .
2 4 + = _< _ Vm. (45) Proof. (of thm. 3) We are seekmg the guesgesuch that
Dtz (ot d)' T Aol

S
1
§ Z Val’( ad|5t < -~ Z Var a|0C 7, (53)

Note that eachi,, is an eigenvalue o€C'x,C7, thus it is
d., > 0for all m's sinceXl, is at least semi-positive definite.

Now condition (45) can be rewritten as: and, repeating the initial steps of the proof of thm. (1), we

obtain the following sufficient condition:
Dim (@) = (01-24— (1—0401»2)d )a — (2aa )a+a§0

(46) =2 dmty Vm. (54
for all m. Notice that: Ao+ % (d + 2 =% Z Ay + 02 (54)
5 52 2 Now if the following inequality is true:
aafzza_;:ur 0_12 -1 a7) W i wing inequality is true:
o2 o2 s
j=1"J jAi I

121 -1
<= v 55
dm+h—S;dm+03 " (59)



then we can repeat the other steps of proof of thm. 1 tgs)
obtain the bound (20). Now condition (55) can be rewritten[G]
as:

?
dm +h < H (dp + 07, . ..
but, sinceh = H (o%,...,

) (56)

(7]
o%), this is true for lemma 10. O

Proof. (of thm. 7) As in thm. 3 we are seeking the guessed®l

S such that:

[9]
. . [10]

and, repeating once more the initial steps of the proof of

thm. (1), we obtain the sufficient condition (recall tht=

o2 for all 4's):

var (a — Agist (?)) < Var(a - aloc,i) (57)

P (8) = (02 + (1 = §) dyn) S+ (~2028) S+ (025) <0
(58)
for all m’s. Now for all m’s andd,,,’s we have thapm ( ) = (12

028 > 0, thatp,, (1) = (1 = 5) (dp +0%) < (1= 13]
0 (we are assuming there are at least two sensors) and[
Pm (S) := Opm (S) /0S, then we have also thait,, (0) =
—20%S < 0 and thatp,, (1) = p,, (1) < 0. This imply
that eachp,, (-) has exactly one root if0,1) (sayry (m)),
while the other root, say: (m), can be befor® or after1
depending on the sign of? + (1 — S)d,,.

Now consider a fixedn. Condition (46) is assured for [16]
S € [1,8,), where:
+00

Sm = { s (m)

If we define Smin := min,, (S,,), condition (43) is now
assured forS € [1,Smin). Note that this condition still
depends onm (i.e. depends orCx,CT). Consider now
the parabola with the smallest,,, say them-th. If m
is its point of minimum, ther2 (ms — 1) < Smin, SO if
S € [1,2(mzm — 1)] then condition (43) is again satisfied.
Slnce(l — S)ds < 0 we have: 2

[14]

[15]

if 72 (m) <0 (17]

otherwise. (59)

(18]

[19]

%S %S
" A8 T (60)
and thus[1,2(S—1)] C [1,2(Smin—1)]. Now we can

conclude that ifS € [1,2(S — 1)] then inequality (43) is
satisfied, and this proves the proposition. O

Proof. (of prop. 8) Condition (31) assures parabolas of
equation (46) to be all concave, thSgsin = +oo, and this
is sufficient for the thesis. O
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